Evaluating Document-to-Document Relevance Based on Document Language Model: Modeling, Implementation and Performance Evaluation

نویسندگان

  • Ge Yu
  • Xiaoguang Li
  • Yubin Bao
  • Daling Wang
چکیده

To evaluate document-to-document relevance is very important to many advanced applications such as IR, text mining and natural language processing. Since it is very hard to define document relevance in a mathematic way on account of users’ uncertainty, the concept of topical relevance is widely accepted by most of research fields. It suggests that a document relevance model should explain whether the document representation describes its topical contents and the matching method reveals the topical differences among the documents. However, the current document-to-document relevance models, such as vector space model, string distance, don’t put explicitly emphasis on the perspective of topical relevance. This paper exploits a document language model to represent the document topical content and explains why it can reveal the document topics and then establishes two distributional similarity measure based on the document language model to evaluate document-to-document relevance. The experiment on the TREC testing collection is made to compare it with the vector space model, and the results show that the Kullback-Leibler divergence measure with Jelinek-Mercer smoothing outperforms the vector space model significantly.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback

Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...

متن کامل

Document Image Dewarping Based on Text Line Detection and Surface Modeling (RESEARCH NOTE)

Document images produced by scanner or digital camera, usually suffer from geometric and photometric distortions. Both of them deteriorate the performance of OCR systems. In this paper, we present a novel method to compensate for undesirable geometric distortions aiming to improve OCR results. Our methodology is based on finding text lines by dynamic local connectivity map and then applying a l...

متن کامل

Automatic keyword extraction using Latent Dirichlet Allocation topic modeling: Similarity with golden standard and users' evaluation

Purpose: This study investigates the automatic keyword extraction from the table of contents of Persian e-books in the field of science using LDA topic modeling, evaluating their similarity with golden standard, and users' viewpoints of the model keywords. Methodology: This is a mixed text-mining research in which LDA topic modeling is used to extract keywords from the table of contents of sci...

متن کامل

A New Document Embedding Method for News Classification

Abstract- Text classification is one of the main tasks of natural language processing (NLP). In this task, documents are classified into pre-defined categories. There is lots of news spreading on the web. A text classifier can categorize news automatically and this facilitates and accelerates access to the news. The first step in text classification is to represent documents in a suitable way t...

متن کامل

Investigating the Impact of Authors’ Rank in Bibliographic Networks on Expertise Retrieval

Background and Aim: this research investigates the impact of authors’ rank in Bibliographic networks on document-centered model of Expertise Retrieval. Its purpose is to find out what kind of authors’ ranking in bibliographic networks can improve the performance of document-centered model.   Methodology: Current research is an experimental one. To operationalize research goals, a new test colle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005